skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leonard, Kevin_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Operandomeasurements of local pH at the nanoscale can significantly improve the understanding of the complex microenvironments that exist in electrochemical systems. However, attempts to easily fabricate a nano-sized pH electrode that can operate under a wide range of pH conditions and have fast temporal responses have been difficult. Here, we show that an anodic-grown Pt/Pt(II) oxide pH sensor manufactured in alkaline conditions (1 M NaOH) shows a near-Nernstian response (−60 mV/pH) from pH 0 to pH 14, is insensitive to dissolved oxygen, cation, and anion identities, and responds correctly in solution with different ionic strengths. This is in contrast to Pt/Pt(II) oxide films grown in acidic media, which do not demonstrate a Nernstian relationship due to cation interference other than H+. We observed a response time of 2.25 s, corresponding to 90% of the final measured pH, for an approximately twelve-fold pH step change when growing the Pt(II) oxide layer on a platinum nanoelectrode. Our findings emphasize the influence of solution pH used for anodization synthesis on the anodic Pt(II) oxide pH sensing properties. The direct oxidation approach for fabricating Pt/Pt(II) oxide microelectrode/nanoelectrode pH sensors can simplify the manufacture of real-time pH sensors for complex aqueous environments. 
    more » « less